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1. INTRODUCTION

The sinqularity expansion method (SFM) has been used to express the
transient response of antennas and scatterers in a compact and useful
form.* By using Prony's algorithm, Van Blaricum and Mittra! were able
to extract the SEM poles and residues from analytical waveforms. The
singularity expansions of experimental data have also been obtained,*
and Van Blaricum and Schaubert’ have demonstrated that the SEM can be
used effectively to compute an antenna's impulse response from measured
data.

The use of the SEM to calculate equivalent impedance circuits has
also been discussed by many authors. However, there has been no
previous application of the SEM to calculate equivalent lumped-element
impedance circuits for antennas. Such circuits, when calculated by
using the SEM, will be valid over a wide frequency range and will,
therefore, be extremely useful for transient and out-of-band response
analyses. Additional advantages of the SEM approach are that the
goodness of fit to the data can be judged prior to calculating the
circuit element values, and the impedance function can be readily
synthesized by existing techniques.

Several problems relevant to the computation of equivalent circuits
for antennas have been investigated, and the results are presented in
sections 2, 3, and 4. Throughout the investigation, primary importance
has been placed upon utilization of experimentally or numerically
derived data. The SEM expansion of time~-domain reflectometer (TDR) data
for a dipole antenna with a quarter-wavelength ()\/4) balun has been
obtained and used to calculate a lumped-element equivalent circuit.

2. RELATIONSHIP BETWEEN Z(s) AND MEASURED QUANTITIES

The first step in calculating an equivalent circuit is deriving the
relationship between the antenna impedance function Z(s), where s is the
Laplace transform frequency variable, and a measurable quantity. One of
the most common and most easily used instruments for measuring impedance
is the TDR, which excites the antenna with a step voltage and displays

I¥. L. van Blaricum and R. Mittra, A Technique for Extracting the
Poles and Residues of a System Directly from Its Transient Response,
IEEE Trans. Antennas Propag., AP-23 (November-1975), 777-782.

M. L. Van Blaricum and D. H. Schaubert, An Fxperimental Transient
Transfer Function via Prony's Method, Proc. 1976 USNC/URSI Meeting,
Amherst, MA (October 1976), 97.

*See Selected Bibliography--Transient Response of Antennas and
Scatterers.

tSee Selected Bibliography--Experimental Data.

isee Selected Bibliography--Equivalent Circuit Synthesis.




the resulting terminal voltage as a function of time (fig. 1). This
terminal voltage, v(t), is related to the antenna's impedance through
the reflection coefficient and a convolution integral. Specifically, if
the Laplace transform pair is defined by

V(s) = ’ vitde " a, (1a)

A0

vit) = ”:j ’ :est ds , (1b)

where o is an appropriate constant, and j = ,-1, then

V(s) = Jv(s) 1 + R(s)) . (2)

1,
«J\Av*—“ﬂj
v.mé v(t)
UNIT STEP s

FUNCTION GENERATOR
vt

Figure 1. Time-domain reflectometer measurement
of antenna impedance.

In equation (2), V(s) and V,(s) are the Laplace transforms of the

terminal voltage and excitation voltage, respectively, and R(s) is the

voltage reflection coefficient of the antenna,
Z2(s) = z0

R(s) = m ’

where 'I.0 is the source impedance of the TDR.




Applying the inverse Laplace transform (1lb) to equation (2) yields

,
1
v(it) = ;.L Vd(t - 1)[8(r) + R(y)) dr . (4)

Since R(t) 1is the inverse Laplace transform of equation (3), the
relationship between v(t) and Z(s) 1is not trivial. In the Laplace
frequency domain, however, the relationship is quite simple.
Substituting equation (3) into equation (2) yields

2(s)

e TRl e

(5)

That is,

V(s)

V,(s) - v(s) ° (6)

2(s) = 2,

It is clear that an analytical expression for Z(s) can be obtained if
analytical expressions for V,(s) and V(s), which are the Laplace
transforms of measurable quantities, are available. The SEM, together
with Prony's method, provides an efficient means of obtaining analytical
expressions for Vv (s) and V(s) when v, (t) and v(t) are known in sampled

data form.
3. SINGULARITY EXPANSION AND PRONY'S METHOD
The singularity expansion of a transient waveform v(t) is defined as

the exponential approximation

N

s t

vit) =3 Anen . (7)
n=1

This expansion can be readily transformed to yield

e
v(s) = Y, ——— . (8)
a1 * " ®n

The L are the poles of the expansion and the An are the residues.




The problem of importance in this section is, given v(t) at discrete
points t =t ., i=1, 2, . . ., find the A_ and s that provide the best
approximation in the form of equation (7?. BeCause the s are not
known, this is a nonlinear approximation problem. However, nProny has
developed an algorithm that converts this problem into two linear
problems plus one polynomial root finding problem, which can be readily
solved on a digital computer.

An outline of Prony's method is presented below. Readers unfamiliar
with the method may consult one of the references.!.,*

If the waveform v(t) is sampled at uniform intervals At, then
equation (7) becomes

N

Snk At
g vikat) = 2: Ane gl e O 2 T e (9)
n=1
s At
Defining zn ze " ,» equation (9) becomes
e k
"y - p 2 AZ ,k=0,1,2,.... (10)
n=1

It can be shown that Z_satisfying equation (10) are the roots of the
polynomial equation

g $ o3+ as . . e 8 w0, (11)

IM. L. van Blaricum and R. Mittra, A Technique for Extracting the
Poles and Residues of a System Directly from Its Transient Response,
IEEE Trans. Antennas Propag., AP-23 (November 1975), 777-782.

*See Selected Bibliography--Transient Response of Antennas and
Scatterers.
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where the o, are the solutions of the linear set of equations
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Prony's method, therefore, consists of three steps:

a. Solve the linear set of equations (12) for the coefficients ai.

b. Obtain the N roots of the polynomial eqguation (11) and,
therefore, the sn = (ln En)fﬁt.

c. Solve the linear set of equations (10) for the residues An (Zn

are known from step b).

Since v(t) is real, the poles sn {and the roots zn) must either he real
or occur in complex conjugate pairs.

4. UNIFORM NORM APPROXIMATION

Once the poles sn are known, step ¢ of Prony's method is a linear
approximation problem. That is, one must find the A that provide the
best approximation to v(t) for a given set of s'. Most workers in
electromagnetic scattering have used the Ly (least squared error) norm
when calculating the A . This norm has the advantage that it leads to
a linear set of algebraic equations for the residues A . However, the
L, norm has the disadvantage that it is not sensitise to the large
deviations that often occur near t = 0. Figure 2 shows a singularity
expansion obtained by the L, norm approximation method.

)
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VOLTAGE (V)
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0 10 20 30 40 50 60 70 80
TIME (n3)

Figure 2. Typical L;-norm approximation of
time-domain reflectometer (TDR) data.

In order to improve the accuracy of calculated singularity
expansions, the third step of Prony's method has been replaced by the
uniform norm approximation problem: Given the poles s , determine the
residues A  that minimize |le (£) || where F

N

s t
lle (t) || ;:_“‘:" vte) = X Ae™ | . (13)
n=1

The norm || - || defined by equation (13) is the uniform norm and is
sensitive to any large deviations of the approximation. However,
computation of the best uniform norm approximation is not a linear
problem. Therefore, additional computation time is required. A
comparison of the L; and L_ (uniform norm) approximation problems for
ctep c of Prony's method is contained in table I. The two waveforms
that were used for this comparison are shown in figure 3, and the
parameters are defined by the discrete problem

min min max N_ s kAt
A, lletat)[[ = A 0 <k <k [ vikat) - X Ae” | . aa
n=1

10

B
)




| TABLE I. COMPARISON OF L, AND L, NORM APPROXIMATIONS

| Number of | Number of At Computation time (s) Sauared erfor
les, N| points, K (ns) Type of data
BOLa% P L Ly Le L, B
14 10 0.25 * 3.13 * 3.3 Impulse response
14 14 0.25 0.12 5.62 3.0 3.0 Impulse response 5
14 20 0.25 0.46 12.3 105.5 2.9 Impulse response
24 24 Q.2 0.53 Li 3 917.4 0.01 TDR
24 30 0.2 1.89 64.9 3.75 0.07 TDR
26 26 0.2 0.62 531 0.15 0.003 TDR
26 30 0.2 2.24 69.7 1076.1 0.0005 TDR

*Underspecified problem does not have unique solution.

2’_
1
| £ o}
2 5l
g
, el

VOLTAGE (V)

1 1 1 1 AL il 1 I 1
0 1 2 3 4 5 6 7 8 9
TIME (ns)

(b)

Figure 3. Test waveforms for comparison of Ls- and
Ly-norm approximations: (a) receive impulse
response of dipole with corner reflector
and (b) time-domain reflectometer data of
dipole.
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Although the computation time is significantly greater for the L_-norm
approximation than for the L,-norm approximation, the errors are
sufficiently less to make the L -norm attractive. In fact, the
uniform norm often yields a very qobd approximation when the L, norm
totally fails due to ill-conditioning of the matrix equation.

Since the uniform norm is equivalent to the L A norm when p + =,
the above approximation problem could also be solved by using the Lp
norm with p equal to a large number. Doing so may result in some
computational advantages,

e PHYSICAL REALIZABILITY OF Z(s)

The impedance function Z(s) derived from a TDR voltage v(t) must
be physically realizable to be synthesized with resistors, inductors,
and capacitors. For a 2(s) given by

) m
ag * 218 * a2s* ¢+ ., . . + a8
Q al L m (15)

T(s) = ————— -,

o n
bg + bys + bog* + . . . + b s
0+ b 2 e

these conditions for physical realizability can be expressedx‘

a. All of the a and bi in equation (15) are real and positive.

b. The poles and =zeros of 2Z(s) are in the left half of the
s plane or on the imaginary axis.

c. The poles and zeros on the imaginary axis are simple.
d. The real part of ?{jw) is not negative for any value of w.

It would be desirable if the conditions a through d could be
guaranteed, or at least checked, at the early stages of the
calculation. However, the relationship between the poles and residues
of the SFEM expansion for v(t) and the poles and =zeros of 2a(s) is
complicated. To see this relationship, consider equation (8) for
V(s):

N A
vis) = ¥ B « 2481 . (16)

N Q(s)

n=1

3w. H. Chen, Linear Network Design and Synthesis, McGraw-Hill Book
Co., Inc., New York (1962).




where P(s) and Q(s) are polynomials of degree N-1 and N, respectively.
Similarly, the SEM expansion of vﬂ(t) leads to

Po(s)
E — 7
VS = 5l (a7
Substituting equations (16) and (17) into equation (6) yields
Z(s) = ——ZoQnisiPis) ., Ble)
208) = 559)10(s) - Qo (s)P(m) ° 208(q) it

The zeros of Z(s) are the zeros of V(s) plus the poles of Vy(s). On
the other hand, the poles of 2(s) are different from the poles and
zeros of either V(s) or V;(s).

Usually, the generator voltage v;(t) is a unit step function so
that V,(s) = 1/s. Then equation (18) can be simplified to

sP(s)

Q(s) - sP(s) i

Z(s) = 29

This equation provides an easily computed relationship between the SEM
expansion of the measurable terminal voltage and the desired impedance
function. Checks for the satisfaction of conditions a through d have
been programmed for automatic testing with the digital computer.

A procelure for generating a physically realizable impedance
function from a given V(s) has been developed and tested. The
procedure is based on a theorem in Weinbergu and is described in
appendix A. The results of numerical tests using the procedure,
however, have not been encouraging. In general, when a nonrealizable
impedance function is obtained, it is best to return to the original
v(t) and calculate a new SEM approximation with different values of N,
K, or At,

6. SYNTHESIS OF LUMPED-ELFEMENT FQUIVALENT CIRCUITS

When a physically realizable impedance function in the form of
equation (15) has been obtained, a number of standard circuit
synthesis procedures may be employed to determine an RLC network
having the prescribed input impedance. The simplest synthesis

“1.. Weinberg, Network Analysis and Synthesis, McGraw-Hill Book Co.,
Inc., New York (1962).




procedure is based on the partial fraction expansion of the impedance
function in equation (15). This procedure has failed for the examples
considered because the individual terms of the partial fraction
expansion are not all physically realizable. Therefore, more general
synthisis procedures such as those of Brune or Bott and Duffin must be
used. 7

The Brune procedure has been selected for the examples that
follow. This procedure leads to the least number of circuit elements
for a given impedance function. A brief description of the Brune
synthesis procedure is given in appendix B,

To illustrate the SFM method of equivalent circuit synthesis, a
standard gain dipole with a A/4 balun has been measured, and its
equivalent circuit has been calculated. The original data obtained
from the TDR experiment are shown in figure 4. An SEM approximation
having 12 poles is shown in figure 5. The values of the poles and
residues are given in table IT.* The maximum deviation of this
approximation is 20 dB below the 0.5-V signal level, and the total
energy in the error signal is 20 dB below the energy in the actual
signal. The impedance function calculated from equation (19) is

ag + a8 + ¢ . . * a;,8!?

B R WBIL R b o b Brghit (20)

3w. H. Chen, Linear Network Design and Synthesis, McGraw-Hill Book
Co., Inc., New York (1962).
YL, wWeinberg, Network Analysis and Synthesis, McGraw-Hill Book Co.,

Inc., New York (1962).

*Since the SEM is an analytical representation of the experimental
data, the poles and residues c¢an be expressed to several significant
figures. Maintaining these significant figures throughout the
calculations insures that the resulting equivalent circuit will
accurately model the SEM approximation to the data. Of course, the
equivalent circuit model for the antenna cannot be more accurate than

the original data.

14




§ =8 x 109

ag = 0.00 by = 0.765 x 10"
a) = 0.668 - 10’ b, = 0.258 x 106
a, = 0.197 x 108 b, = 0.286 x 106
a; = 0.156 x 10% by = 0.254 x 10°
a, = 0.112 x 108 b, = 0.177 x 10°
ag; = 0.512 x 107 bs; = 0.774 x 10°
a;, = 0.206 x 10’ bg = 0.353 x 10°
a; = 0.592 x 10° b; = 0.952 x 10"
ag = 0.157 x 10° bg = 0.287 x 10"
ag = 0.273 x 10° b, = 0.487 x 10°
a;p = 0.493 x 10" by = 0.957 x 10°
a;; = 0.428 x 103 b;; = 0.830 x 10!
a;, = 0.477 x 10° by, = 0.105 x 10!

This impedance function is physically realizable as can be seen from
the coefficients of equation (20), the locations of the poles and
zeros (table IIT), and the value of the real part (fig. 6). By using
Brune's synthesis procedure, the lumped-element equivalent circuit in
figure 7 is obtained. This circuit can be substituted for the antenna
in any network analysis code. For any frequency within the range of
validity of the equivalent circuit (typically several decades), the
computed voltages and currents within the network would be the same as
if the antenna were attached. For receiver applications, a Thevenin
representation of the antenna consisting of a source and the
calculated equivalent impedance circuit can be used.




TIME (ns)

Figure 4. Time-domain reflectometer data of impedance
of dipole with A/4 balun.

0.7
= TOR DATA

0.6 7,77 ———— SEM APPROXIMATION
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0 10 20 30 40 50 60 70 80 9.0 100
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[~

Figure 5. Twelve-pole singularity expansion method
(SEM) approximation to time-domain reflectometer
(TDR) data of dipole antenna.

TABLE 11. POLES AND RESIDUES OF SINGULARITY EXPANSION METHOD
APPROX IMATION TO DIPOLE DATA

Poles (x10") Residues
-0.93124 + j5.05272 -0.04076 + j0.12436
-0.83504 « j3.9772¢ -0.19291 + jO.44all
-0.72280 « j1.82908 -0.31189 . j0.06252
-0.63500 ' j2.92050 =0.10172 « j0.40237
-0.62839 ' j3,38884 0.49460 « j0.00000

=0.46253 ' j0.00000 0.39124 + j0.00000




TABLE 111. POLES AND ZEROS OF Z(s) FOR DIPOLE

Poles (x109) Zeros (.|§x)r
-2.3542 + j4.0616 -2.123C . j1.8792
-0.3345 + j5.2596 -1.5150 . j5.6375
-0.1807 + j3.5347 -0.3259 + j2.3158
-0.1739 + j2.7866 -0.2395 + j3.2719
-0.0864 + j1.4718 -0.0504 .+ jk4.3324
-0.4625 + j0.0000 -0.4625 + j0.0000

-1.2186 + j0.0000

0.0000 + j0.0000

— 4500
§ 4000
350.0
w 3000
250.0
200.0
5 150.0
100.0
50.0

0
-50.0
-100.0

0 01 02 03 04 05 06 07 08 09 10
FREQUENCY (GHz )

Figure 6. Real part of Z(s) for dipole.

To check the synthesis procedure, a circuit that represents the
TDR experiment has been analyzed by wusing the SPICE computer code.
The circuit consisted of a 1-V step generator, a 50-ohm source
resistor, and the lumped-element equivalent circuit (fig. 8). The
calculated network response and the expected response (SEM
approximation) are compared in figure 9. The comparison is excellent,
and the equivalent circuit is a very good representation (errors at
least 20 dB below signal) of the actual antenna.
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i

where

ap

az

ajs

as

The
calculated.
in figure 10.

VOLTAGE (V)

Figure 9.

equivalent

——— SPICE CALCULATION

140

20

TIME (ns)

30

40

50

Comparison of desired (singularity expansion
me thod--SEM--approximation) and calculated
responses of lumped-element equivalent
circuit for dipole.

circuit for a

vagi

antenna has

also been

The TDR data and the 10-pole SEM approximation are shown
of the approximation are given

of the actual signal.

0.00

0.194

0.112

0.218

0.184

0.887

Z(s)

=g x 10-10

x 10~

x 10-1

x 10%

The poles and
in table IV. The energy of the error signal is 26 dB below the energy
The impedance function for this voltage is

residues

ap + a)s + .

« « * ajps

10

5 By + b +
b, = 0.151
b; = 0.918
b, = 0.200
by = 0.237
by = 0.225
bs = 0.161

& bl(]§10

-l

x 10

(21)




1

ag = 0.451 x 10 bg = 0.564 x 107!
a; = 0.107 x 10° b; = 0.256 x 10"
8 = 0.312 x 10° bg = 0.456 x 10"
ag = 0.315 x 102 by = 0.101 x 10!
a,, = 0.489 x 10- by = 0.102 x 10!

Fxamination of equation (21), the data in table V, and figure 11
reveals that this
synthesis procedure yielded the equivalent circuit in figure 12.

VOLTAGE (V)

-0.1

Figure 10.

08

0.7
0.6
05
04

03}

0.2
0.1

impedance 1is physically realizable. The Brune

—— TOR DATA
~-— SEM APPROXIMATION

TABLE V.

Poles (.10")
-2.00150 + j1.36453
-0.58429 + jh. 24343
=0.14017 * j2.47081

-0. 34856

-0.94222 *+ j0.00000

t P S i,

1 1 1 1

AT st e SECNR
0 20 40 60 8.0 100 120 14.0 16.0 18.0 200

TIME (ns)

Ten-pole singularity expansion method (SEM)
approximation to time-domain reflectometer (TDR)
data of yagi antenna.

POLES AND RESIDUES OF SINGULARITY EXPANSION
METHOD APPROXIMATION TO YAGI DATA

Residues

=1.05713 + j1.29353
-0.03312 . j0.06859
0.03728 * j0.00743

* j0.00000 0.40960 * j0.00000

0.88773 + j0.00000




TABLE V. POLES AND ZEROS OF 2(s) FOR YAGI

| Poles (107 ) Zeros (~10°)

-0,065856 « jo.011a -0, 14879 i0.54307

-0,02368 -+ jO.40602 -0.08271 jO. 33522

-0.00926 * jO.26028 0,071 001618

<0.00260 * j0.10659 =0.00267 j0,23826

=0.75164 + j0.00000 ~0,03486 + j0.00000

=0, 03486 + j0O.00000 0.00000 + jO.00000
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Figure 11. Real part of 2(s) for yagi.
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Figure 12. Lumped-element equivalent circuit tor yagi antenna.




A SPICF analysis of the TDR response of this lumped-element
equivalent circuit yielded the result shown in figure 13. There is
excellent agreement between the expected and calculated waveforms.
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Figure 13. Comparison of desired (singularity expansion method--SEM--
approximation) and calculated responses of lumped-element
equivalent circuit for yagi.
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s TRANSFER FUNCTION CALCULATIONS

The terminal properties of a 1linear, time-invariant antenna can
be completely described by a Thevenin or Norton equivalent circuit.
These circuits consist of two parts: (1) an independent source that
represents the open circuit voltage or short circuit current of the
antenna wheri it is illuminated by an electromagnetic field and (2) an
equivalent circuit that represents the antenna's input impedance or
admittance. This equivalent impedance or admittance circuit can be
synthesized by the techniques described above. Furthermore, the SEM
can be used to characterize the independent source.

The SEM characterization of the antenna's voltage or current is
obtained by calculating the impulse response or the frequency domain
transfer function of the antenna in the form of equation (7) or (8).
The characterization is calculated by finding an SEM approximation to
the measured or calculated response of the antenna (open circuit
voltage or short circuit current) to a short pulse of electromagnetic
‘energy.2:5 This SEM approximation is an analytical estimate of the

2M. L. van Blaricum and D. H. Schaubert, An Fxperimental Transient
Transfer Function via Prony's Method, Proc. 1976 USNC/URSI Meeting,
Amherst, MA (October 1976¢), 97.

Sp. H. Schaubert, Measurement of the Impulse Response of
Communication Antennas, Harry Diamond Laboratories TR-1832 (November
1977).
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antenna's impulse response, and it may be convolved with any incident
waveform to obtain the resulting terminal voltage or current.
Therefore, the SEM can be used to generate equivalent circuits that
completely characterize the terminal properties of an antenna.

8. CONCLUS IONS

The singularity expansion method (SEM) has been shown to be an
effective tool for synthesizing lumped-element equivalent circuits
from experimentally derived time-domain reflectometer (TDR) data. The
poles of the SEM expansion are calculated by using the standard Prony
algorithm. The residues, however, are calculated by an iterative
scheme that vyields a uniform norm approximation instead of a least
squared error norm approximation. The uniform norm provides much
better control of the early time errors and leads to a better overall
approximation. The increased computation time required for the
uniform norm approximation is readily justified because this time is
not large compared to the total time for calculating tlie equivalent
eircuit. Furthermore, the time spent in calculating the SEM
approximation is repaid by the final circuit, which produces exactly
the voltage response prescribed by the SEM approximation.

Once the physical realizability of the calculated impedance
function has been verified, a standard circuit synthesis procedure,
such as that of Brune or Rott and Duffin, may be used to obtain the
desired RLC equivalent circuit. In general, the partial fraction
expansion of 2Z(s) will not vield subcircuits that are physically
realizable.

When combined with the previously developed technique for
measuring the impulse response of antennas, SEM synthesis of
equivalent impedance circuits is a powerful and generally applicable
tool for converting experimentally obtained data into Thevenin and
Norton equivalent «circuits for use in wide-bandwidth analytical
modelling of transmitter and receiver systems.
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APPENDIX A.--PHYSICAL REALIZABILITY VIA MULTIPLICATIVE FACTOR

Theorem 6.5 in Weinberg! states that Z(s) = Z,[1 + R(s)]/[1 -
R(s)) is a physically realizable function if and only if

1. R(s) is a real rational function with no poles in the right
half plane or on the imaginary axis, and

2. |R(IQ | <1 for all real .

This theorem and equation (18) in the main body of this report
can be used to obtain an impedance function z"(s) that depends on the
parameter «, 0 < a s 1. For a = 1, Z (s) equals the impedance
corresponding to R(s). For 0 <a<1,” Z2,(8) is the impedance
corresponding to a reflection coefficient aR(s).

The proposed scheme for calculating a physically realizable
impedance function requires that the singqularity expansion method
(SEM) approximation to V(s) and Vy(s) be manipulated to obtain
R(s) = N(s)/D(s), where N(s) and D(s) are polynomials. Then

1 + aR(s)
1 - aRr(s)

2 (s) = 2¢
(81

(A-1)

can be calculated for various ., and the largest a < 1 for which 2 _(s)
is physically realizable is the "best" impedance function. ("Best" is
used in the sense that the poles and zeros of the reflection
coefficient are those obtained from V(s) and Vi (s) and
;R‘(im)i = .;R(jm)i 2 L)

The impedance function Zd(s) can be related directly to the SEM
expressions for V(s) and V((s). Fquation (2) in the main body of the
report implies that

v(s) P(8)Q (s)
= D - B D ce— - -y
Rend 7 1 T T 1 1 7Y 7 SR (A=2)

Theretore,

2aP(8)Qp(s) = Q(s)P;(s)
R (8) = aR(s T A=-13)
I\J( ) VR () 0(SIP, () . (

Y3 Weinberqg, Network Analysis and Synthesis, McGraw=Hill Book Co.,
Inc., New York (1962).




Substituting equation (A-3) into equation (A-1) yields

(1 - 0)Q(s)P;(s) + 2aP(s)Q((s)

Zu(s) 5 z0(1 + a)Q(s)Pj(s) - 2aP(s)Qqy(s) ° ta=4)

For step function excitation, Vy(s) = 1/s, and equation (A-4) reduces
to

(1 = W)Q(s) + 2asP(s)

Z =
‘l(s) zo(l + a)Q(s) - 2asP(s)

28
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APPENDIX B.--BRUNE SYNTHESIS OF RLC NETWORKS

A detailed descripgion of the Brune synthesis procedure can be
found in many texts. '’ Te following is a brief summary of the
procedure.

The Brune synthesis procedure is based on the tee representation
of a transformer (fig. B-1). In the tee representation, one of the
inductances L_or L. is negative, but the network is still considered
physically reglizable.

L

M
-y
Ly g %lc e
O~ -0 [ SEEE—

L'“L.“" L'
M=Ll,
L =Lt L,

Figure B-1l. Equivalent representations of transformer.

Starting with the nth order impedance function,

n n=1
a8 +.8a s + o« o ¥ ag
nel

A R e e e s (B-1)

’
n n=1
b s + b 5 e N TR bn

n n=

a single cycle of the synthesis procedure yields the network in
figure B-2, where 2 ,(s) is of order n-2. The Brune cycle for reducing
Z(s) consists of four steps:

! 1.. Weinberg, Network Analysis and Synthesis, McGraw-Hill Book Co.,
Inc., New York (1962).

2w. H. Chen, Linear Network Design and Synthesis, McGraw-Hill Book
Co., Inc., New York (1962).
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APPENDIX B

1. Remove R) = ™" Re z(ju) (fig. B-3).

2. Remove Ll = Im Z(jwl)/wl.

3. Remove the shunt arm L2C?. which produces =zeros in Z?(s)
at s = *jw,.

4. Remove L3, which causes Z3j(s) to have a pole at infinity.

—_——— e

l

2,00 2,0 e 2,0

Figure B-2. Realization of single Brune cycle.

Re Z(w)

w,

Figure B-3. Typical resistance function for Brune
synthesis procedure.

30




These four steps require polynomial manipulations

into a transformer as shown in figure B-4.

Z,(9)

Figure B-4. Final Brune circuit with transformer.

APPENDIX B

that can be readily
programmed on the digital computer. The equivalence in figure B~1 may

be used to convert a Brune circuit containing a negative inductance
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